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Abstract
In this paper, we propose the Ordered Median Tree of Hub Location Problem 
(OMTHL). The OMTHL is a single-allocation hub location problem where p hubs 
must be placed on a network and connected by a non-directed tree. Each non-hub 
node is assigned to a single hub and all the flow between origin–destination pairs 
must cross at least one hub. The objective is to minimize the sum of the ordered 
weighted averaged collection and distribution costs plus the sum of the interhub flow 
costs. We present different MILP formulations for the OMTHL based on the prop-
erties of the Minimum Spanning Tree Problem, the ordered median optimization 
and on the different ways of modeling flow within the network. Given that ordered 
median hub location problems are rather difficult to solve, we have improved the 
OMTHL solution performance by introducing covering variables in two valid refor-
mulations. In addition, we have developed two pre-processing phases to reduce the 
size of these formulations. We establish an empirical comparison between these new 
formulations and we also provide enhancements that together with a proper formula-
tion allow to solve medium-size instances on general random graphs.
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1 Introduction

Hub-and-spoke problems have a great importance in transportation and telecommu-
nication systems in which several origin–destination points exchange flows. In such 
models, the key feature is to connect each pair via specific subsets of links to con-
solidate and distribute the flows to reduce costs based on the economy of scale of 
intermediate connections. Therefore, Hub Location Problems (HLPs) integrate two 
decision levels: location of facilities (hubs) to consolidate deliveries and network 
design to determine the routes for the flow between different origin–destination pairs 
to optimize some performance measure. Hub location has become an important area 
of research in the field of Supply Chain Networks and one can find in the last years 
a large number of specialized publications in the field (Boland et al. 2004; Cáno-
vas et al. 2007; Campbell 1996; Campbell et al. 2007; Contreras et al. 2009; Ernst 
and Krishnamoorthy 1999; Hamacher et  al. 2004; Labbé and Yaman 2004, 2008; 
Labbé et al. 2005; Marín 2005a, b; Marín et al. 2006; Rodríguez-Martín and Sala-
zar-González 2008; Yaman 2005; Bollapragada et al. 2006; Kara and Tansel 2000, 
2003; Kratica and Stanimirović 2006; Meyer et al. 2009; Tan and Kara 2007; Wag-
ner 2008; Taherkhani and Alumur 2019; Blanco and Marín 2019; Fernández and 
Sgalambro 2020); as well as several interesting surveys (Campbell et al. 2002; Alu-
mur and Kara 2008; Campbell and O’Kelly 2012; Farahani et al. 2013; Contreras 
and O’Kelly 2019).

Traditionally, many hub location models assume that the hubs are fully intercon-
nected, that is to say, there exists a link connecting any pair of hubs, which can be 
used by applying the corresponding discount factor. However, it is widely accepted 
that there exist many applications in which the backbone network (i.e., the network 
connecting the facilities) is not fully interconnected (see O’Kelly and Miller 1994). 
Several HLPs considering incomplete hub level networks have thus been studied. 
These problems can be seen from a hub arc location perspective (see Campbell et al. 
2005a, b; Contreras and Fernández 2014), in which the location of a set of hub arcs 
and their associated hub nodes is considered. Motivated by specific applications, 
some of these models require the hub-level network to have a particular topological 
structure, such as cycles (Contreras et al. 2017; Lee et al. 1993), stars (Labbé and 
Yaman 2008), trees (Contreras et al. 2009, 2010, Martins de Sá et al. 2013), or lines 
(Martins de Sá et al. 2015). Some other models do not even require the hub arcs to 
define a single connected component (Campbell et al. 2005a; Contreras and Fernán-
dez 2014).

As mentioned, an example of a hub location model that does not require full 
interconnection between hubs is the Tree of Hub Location problem (THL), intro-
duced by Contreras et  al. (2009, 2010). Similarly, in this paper, we use a tree as 
backbone network connecting the hubs in a different problem. It is a single-alloca-
tion hub location problem where a fixed number of hubs have to be located on a net-
work, with the particularity that it is required that the hubs are connected by means 
of a (non-directed) tree. The THL is defined on a graph where it is assumed that for 
each pair of nodes, there exists a known amount of flow that must be sent through 
the network.
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Recently, another feature, namely weighted averaging objective functions, has 
also been incorporated to the analysis of HLPs (Puerto et  al. 2011; Ramos 2012; 
Puerto et  al. 2013, 2016). It has been recognized as a powerful tool from a mod-
eling point of view because it allows to distinguish the roles played by the different 
entities participating in a hub-and-spoke network inducing new type of distribution 
patterns, see Rodríguez-Martín and Salazar-González (2008), Fonseca et al. (2010), 
Kalcsics et al. (2010a) and Kalcsics et al. (2010b). Each one of the components of 
any origin–destination delivery path gives rise to a cost that is weighted by different 
compensation factors depending on the role of the entity that supports the cost. This 
adds a “sorting” problem to the underlying hub location problem. The objective is to 
minimize the total transportation cost of the flows between each origin–destination 
pair after applying rank-dependent compensation factors on the transportation costs.

In this paper, we consider the Ordered Median Tree of Hub Location Problem 
(OMTHL) that is a single-allocation hub location problem, where p hubs must be 
placed on a network and connected by a non-directed tree. Each node must be allo-
cated to one single hub and all the flow from/to this node must leave/enter it through 
its allocated hub. Excepting the arcs that connect each node with its allocated hub, 
the only arcs that can be used for routing the flows must be links connecting hubs. 
There is a unit transportation cost associated with each arc. As usual, if hubs are 
located at both end-nodes of the arc, a discount factor is applied to the unit cost. The 
objective is to minimize the operation costs of the system (collection and distribu-
tion flow costs), which depend on the amount of flow that circulates through the arcs 
connecting origin/destination to hubs using the ordered median objective function, 
and on the links between hubs to which the discount factor is applied (inter-hub flow 
costs).

As mentioned above, our hub location model has two main modeling aspects: (1) 
the tree structure defined by the hub network and (2) the rank-dependent compen-
sation factors applied to the operation costs of the system (collection and distribu-
tion flow costs) through the ordered median function. Several potential applications 
justify the analysis of the proposed model. As for the first modeling aspect, it is 
worth mentioning that models where facilities are connected by means of a tree arise 
when the cost of the links between facilities is very high, and as a consequence full 
interconnection is prohibitive. Specific applications of such problems arise mostly in 
telecommunications (see Hu 1974; Nguyen and Knippel 2007) and in transportation 
(see, for instance, the recent work of Chen et al. (2008) for an excellent description 
of the practical relevance of tree-backbone problems in small package delivery). On 
the other hand, regarding the rank-dependent weights applied to the operation costs, 
its application naturally arise when these weights can be seen as compensation fac-
tors that try to diminish unfair situations of the origin/destination sites with respect 
to the distribution system (tree of hubs). The reader may note that we are simul-
taneously making decisions on placing hubs that define the intermediate distribu-
tion system, and establishing the delivery paths from origin sites to final destination. 
Thus, a solution that is good for the system (the entire supply chain) might not be 
acceptable for single parties if in that solution their costs to reach the system are too 
high relative to similar costs for other parties. In this situation some compensation to 
unhappy sites may be expected to prevent those sites from not using the system. The 
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goal of our rank-dependent weights is to compensate unfair situations, such as those 
described above. One specific application of the THLP is the design of a backbone 
underground train network in a city. Since the underground is a public service, the 
goal is that each district is close to at least one metro station; therefore, in our objec-
tive function, long distances will be penalized with the largest weights, for instance 
using k-centrum criteria.

The remainder of the paper is organized as follows. In Sect.  2, we formally 
define the OMTHL and a scheme that relates this problem with others well known 
in the literature. Section  3 presents the catalog of formulations that we study for 
the OMTHL. Section  4 develops some preprocessing phases for fixing variables 
and some valid inequalities are developed to enhance the initial formulations. The 
empirical performance of the resulting OMTHL formulations is analyzed in Sect. 5, 
where we present extensive numerical results and a comparison of this formulations 
for different particular cases. Finally, some conclusions are summarized in Sect. 6.

2  Problem description and subproblems

2.1  Notation and definition

In this section, we formally introduce the OMTHL and fix the notation for the rest 
of the paper. The OMTHL is an extension of several classical hub location prob-
lems combining that the interhub network must be a spanning tree (see, e.g., Con-
treras et al. 2009) and distribution plus collection costs (the costs from the origin 
to the hub system plus from the hub system to the origin) are aggregated using an 
ordered median objective function (see e.g. Puerto et  al. 2011). We proceed next 
with the notation. Let V be the set of demand nodes which exchange flow that are 
also assumed to be candidates to become hubs. For all origin–destination pairs ij, 
with i, j ∈ V  , there exists an amount of flow wij to be delivered from i to j through at 
least one hub. Let also Oi =

∑
j∈V wij and Di =

∑
j∈V wji be the total flow originating 

at and entering in node i ∈ V  , respectively. The model assumes that single alloca-
tion, i.e., each node has a common hub for its outgoing flow and incoming flow; 
so once it is fixed, every path connecting each origin–destination pair ij is unique. 
When there is only one hub present in such a path, there are no inter-hub links; 
otherwise, the inter-hub connection must use the edges of the installed tree of hubs. 
The use of each delivery path induces two types of per unit flow costs: (1) the inter-
hubs delivery cost and (2) the distribution and collection costs. To the former cost, 
a discount factor 0 ≤ � ≤ 1 is applied representing the economy of scale. Thus, each 
unit of flow that is sent from a non-hub node i to a hub k (likewise from a hub m to 
a non-hub j) induces a cost cik ≥ 0 ( cmj ≥ 0 ); whereas when it goes between two hub 
nodes k and m, the cost induced is �ckm . No further hypothesis on symmetry of costs 
or triangular inequality is assumed.

In addition, this model compensates distribution and collection costs using the 
scaling factor parameters � = (�1,… , �|V|) (Puerto et al. 2011, 2013, 2016 and see 
also Boland et al. 2006; Kalcsics et al. 2010a; Marín et al. 2009, 2010; Nickel and 
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Puerto 2005 for different ordered median location models). Indeed, if in a solu-
tion, a node i sends and receives commodity from a hub k and this cost, namely 
(cikOi + ckiDi) , was ranked in the �-th position among these type of costs, then this 
term would be scaled by �

�
 , i.e., the corresponding objective function component 

would be �
�
(cikOi + ckiDi) . For the sake of understandability, we summarize the 

introduced notation in Table 1.
Observe that depending on the choices of the �-vector, we can obtain differ-

ent criteria to account for the costs in the objective function. For instance, if 
� = (0,… , 0, 1, k…, 1) is considered, the first component of the objective function 
would be the sum of the k-largest costs (k-centrum). This usually provides differ-
ent solutions or different allocation patterns for problems with different � , even 
though the optimal solution gets the same set of open hubs (see Puerto et al. 2011 
for further details).

Table 1  Notation introduced for the OMTHL problem

V Set of nodes and hub candidates
i, j, k, m Indexes for the network nodes
wij Amount of flow to be delivered from i to j through at least one hub
Oi Total flow originated at node i ∈ V

Di Total flow entering in node i ∈ V

� Discount factor applied to the inter-hubs delivery representing the economy of scale
cik Cost induced by each unit of flow that is sent from a non-hub node i to a hub k
�ckm Cost induced by each unit of flow that is sent between two hub nodes k and m
� ∈ V Index for the �-th position of the sorted sequence of distribution and collection costs
�
�

Scaling factor for the �-th distribution and collection cost
p Fixed number of hubs to locate

1 2

3 4
5

6 7

8

9 10

(a)

1 2

3 4
5

6 7

8

9 10

(b)

1 2

3 4
5

6 7

8

9 10

(c)

Fig. 1  Three different OMTHL solutions according to median (a), k-centrum (b) and k-trimmed mean 
criterion (c), considering � = 0.8 , Euclidean distances and equal origin–destination flows
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With the above elements, the OMTHL consists of locating p hubs and set-
ting an interhub network linking them with a non-directed tree. Moreover, each 
non-hub node must be allocated to one single hub in such a way that the rank-
dependent compensated costs of the non-inter-hub deliveries (collection and 
distribution costs) plus the discounted cost of the inter-hubs deliveries are mini-
mized. Figure 1 depicts different OMTHL solutions according to (a) the median 
� = (1, 10…, 1) , (b) k-centrum � = (0, 6…, 0, 1, 4…, 1) and (c) k-trimmed mean crite-
rion � = (0, 0, 0, 1, 1, 1, 1, 0, 0, 0) , considering � = 0.8 , Euclidean distances and 
equal origin–destination flows.

Our first observation is that the OMTHL is an NP-hard problem which comes 
from the hardness results of the different combinatorial problems that give rise to 
the OMTHL. By Contreras et al. (2010) its proof is straighforward since THL is a 
particular case of OMTHL.

In the following, we will present several integer programming formulations for 
the OMTHL. Depending on the cases, we use different sets of variables, mostly bor-
rowed from some previous formulations on Hub Location Problems.

2.2  OMTHL subproblems

The OMTHL is a complex network design problem that involves a number of com-
ponents each of which is by itself a hard combinatorial optimization problem. The 
OMTHL has as subproblems different well-known problems of the literature. Start-
ing with the classical p-median location problem (PMED) three different elements 
can be added to model new features. 

1. Connectivity: A connected structure can be imposed among the chosen facilities
2. Flow: Optimizing the location of hub facilities and spokes allocations that mini-

mizes the sum of distribution and collection costs plus the weighted costs of 
inter-hub connections using a connected structure, subject to a budget constraint 
for the inter-hub connected structure.

3. Sorting: Transportation costs between nodes and facilities are sorted in non 
decreasing order and each term in this sequence is weighted with a correction 
factor.

In this way, the connectivity imposed to PMED gives rise to the p-median location 
problem with inner Connected structure (PMEDC). When the connected structure is 
a tree, we define the p-median location problem with inner Tree structure (PMEDT) 
that is closely related to the problem known in the literature as the connected facility 
location problem (Gollowitzer and Ljubić 2011). In addition, flow can be included 
into PMEDC and/or PMEDT giving rise to the network Hub Location problem (HL) 
and the Tree of Hubs Location problem (THL) (Contreras et al. 2009), respectively.

Besides, sorting can be included in PMED giving rise to the well-known Ordered 
Median location problem (OM) (Nickel and Puerto 2005). In this way, adding also 
connectivity onto OM, gives rise to the Ordered Median location problem with inner 
Connected structure (OMC). When the connected structure is a tree, we define the 
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Ordered Median location problem with inner Tree structure (OMT). In addition, 
flow can be included into OMC and/or OMT giving rise to the Ordered Median Hub 
Location problem (OMHL) (Puerto et  al. 2011) and the Ordered Median Tree of 

OM

PMED

OMC

OMT

PMEDC

PMEDT

OMHL

OMTHL

HL

THL

+conn. +flow

+sort.

Fig. 2  Diagram of relationships among the different models

Table 2  Sets of OMTHL constraints that are activated for each OMTHL subproblem

OMTHL PMED PMEDC PMEDT HL THL OM OMC OMT OMHL

(1a) � = 0, � = � � = 0, � = � � = 0, � = � � = � � = � � = 0 � = 0 � = 0

(1b) ✓ ✓ ✓ ✓

(1c) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

(1d) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

(1e) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

(1f) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

(1g) ✓ ✓ ✓

(1h) ✓ ✓ ✓

(1i) ✓ ✓ ✓ ✓

(1j) ✓ ✓ ✓ ✓

(1k) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

(1l) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

(1m) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

(1n) ✓ ✓ ✓ ✓ ✓ ✓ ✓

(1o) ✓ ✓ ✓
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Hubs Location problem (OMTHL), respectively. The reader is referred to Fig. 2 to 
have an overview of the different considered problems and their relationships.

OMTHL subproblems can be described explicitly according to a general OMTHL 
formulation, namely F4i , that is presented in Sect. 3.1. Table 2 displays the set of 
constraints that are activated from the OMTHL formulation for each OMTHL 
subproblem.

Concerning the sizes that one could expect to solve for the OMTHL, we note in 
passing that the OMHL is the most similar problem to the OMTHL. Since OMHL has 
been solved to optimality for non-complete graphs (AP data) up to 30 nodes (see Puerto 
et al. 2011, 2013), that should be the size of the largest set of instances that could be 
expected to be solved for the OMTHL. As we shall show later, this is confirmed by our 
computational experiments in Sect. 5.

3  OMTHL formulations

3.1  A 4‑index MILP formulation for the OMTHL

The first formulation that we present is based on the use of four-index variables to trace 
the paths followed by the flow between origins and destinations. This formulation is 
based on the ones presented by Contreras et al. (2009) for the Tree of Hubs Location 
Problem without order. The main characteristic of this formulation was that it provides 
very good LP-bounds. To present this formulation, we first define the following fami-
lies of variables for any i, j, k,m ∈ V ∶ i < j,

Observe that if this variable takes value 1, it also means implicitly that the flow that 
goes from j to i, i < j passes through the arc (m, k).

Next, to model the tree of hubs, we use a standard flow formulation as for instance 
the one given in Contreras et al. (2010). That type of formulation needs binary vari-
ables indicating whether or not an arc is used in the tree. For any k,m ∈ V ∶ k < m , let

We represent the allocation of node i to hub k simultaneously with the sorted posi-
tion of the associated distribution and collection cost using the following binary var-
iables for any i, k,� ∈ V:

xikmj =

⎧
⎪⎨⎪⎩

1, if the flow that goes from origin i to destination j, i < j, passes through the arc

(k,m) connecting hubs k and m,

0, otherwise.

ykm =

{
1, if the edge {k,m} connects hubs k and m > k,

0, otherwise.

z
�

ik
=

{
1, if a node i is allocated to a hub k, and the cost cikOi + ckiDi is the �-th smallest,

0, otherwise.
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Finally, we define the aggregated version of z�
ik

 variables, as zik ∶=
∑

�∈V z
�

ik
 , for 

modeling purposes (see Table 2):

Parameters � = (�1,… , �|V|) compensate distribution and collection costs by assign-
ing the scaling factor �

�
 to each cost (cikOi + ckiDi) ranked in the � th position. The 

reader may observe that some of the previous variables were already used in Puerto 
et al. (2016) to give an alternative model for the OMH.

The four-index formulation for OMTHL is: 

zik =

{
1, if a node i is allocated to a hub k,

0, otherwise.

(1a)

F4i ∶ min
∑
�∈V

∑
i∈V

∑
k∈V

𝜆
�
(cikOi + ckiDi)z

�

ik
+ 𝛼

∑
k∈V

∑
m∈V∶m≠k

∑
i∈V

∑
j∈V∶i<j

(ckmwij + cmkwji)xikmj

(1b)s. t.
∑
k∈V

∑
m∈V∶m>k

ykm = p − 1

(1c)
∑
k∈V

zik = 1 i ∈ V

(1d)
∑
k∈V

zkk = p

(1e)zkm + ykm ≤ zmm k,m ∈ V ∶ k < m

(1f)zmk + ykm ≤ zkk k,m ∈ V ∶ k < m

(1g)xikmj + ximkj ≤ ykm i, j, k,m ∈ V ∶ k < m ∧ i < j

(1h)zjk +
∑

m∈V∶m≠k

xikmj = zik +
∑

m∈V∶m≠k

ximkj i, j, k ∈ V ∶ i ≠ k ∧ i < j

(1i)
∑
i∈V

∑
k∈V

z�
ik
≤ 1 � ∈ V

(1j)
∑
i∈V

∑
k∈V

z�
ik
(cikOi + ckiDi) ≤

∑
i∈V

∑
k∈V

z�+1
ik

(cikOi + ckiDi) � ∈ V ∶ � < |V|

(1k)zik =
∑
�∈V

z�
ik

i, k ∈ V
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Objective function (1a) ensures that the total cost is minimized. The first component 
accounts for the compensated sorted distribution and collection costs; while, the second 
one is the interhub transportation cost. Constraints (1b) ensure that the network struc-
ture that is induced by the y variables contains p − 1 edges. Constraints (1c) ensure that 
each origin is assigned exactly to one hub. Constraint (1d) fixes the number p of hubs 
to be installed. Constraints (1e) and (1f) avoid an edge to be used simultaneously as an 
allocation and as an interhub connection. Moreover, they also ensure that the access 
nodes to the tree of hubs and the nodes defining this tree should be open hubs. Con-
straints (1g) ensure that flow can only be routed through installed links. Constraints 
(1h) guarantee the conservation of the flow between each origin–destination pair. For 
a given pair jk, the left-hand side of the equality adds up the flow incoming node k 
directly from node i (if i is not a hub and it is allocated to k), plus the flow with origin at 
i incoming node k from another hub m. The right-hand side of the equality adds up the 
flow with origin in i going from hub k to another hub (if k is a hub), plus the flow with 
origin in i and destination in any non-hub node allocated to hub i (again if k is a hub). 
These constraints together with (1b) ensure that the network structure that is induced 
by the y variables is a tree. Constraints (1i) prevent that a sorted position is assumed by 
more than one allocation cost. Constraints (1j) ensure that the correct order of costs in 
the first term of the objective function is assured. Finally constraints (1k) relate zik and 
z�
ik

 . When solving the OMTHL, zik variables are replaced by the aggregation of z�
ik

 , giv-
ing rise to a formulation with a smaller number of variables.

3.2  A 3‑index MILP formulation for the OMTHL

This subsection presents another integer programming formulation for the OMTHL 
using now a set of 3-index continuous variables to represent routes between origins 
and destinations (see Puerto et al. 2011, 2013, 2016). These variables are defined as the 
amount of flow that is sent from origin i ∈ V that traverses arc (k, m) for any k,m ∈ V:

We also use the previously defined y- and z-variables. Hence, the formulation is 
given by: 

(1l)z�
ik
∈ {0, 1} �, i, k ∈ V

(1m)zik ∈ {0, 1} i, k ∈ V

(1n)ykm ∈ {0, 1} k,m ∈ V ∶ k < m.

(1o)xikmj ≥ 0 i, j, k,m ∈ V ∶ k ≠ m ∧ i < j.

xikm = amount of flow with origin at i that traverses the hub arc (k,m).

(2a)F3i ∶ min
∑
�∈V

∑
i∈V

∑
k∈V

�
�
(cikOi + ckiDi)z

�

ik
+ �

∑
k∈V

∑
m∈V∶m≠k

∑
i∈V

ckmxikm
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 As it is usual in formulations based on aggregated flows the LP bound tends to 
be weak. To enhance this bound, one can strengthen constraints (2b) using a bet-
ter upper bound on the right-hand side. It is clear that the flow sent from node i 
that will traverse edge (k, m) will be upper bounded by Oi minus the flow that visits 
only the node i ( wii ), minus the flow that visits the first node of that edge, namely 
min{wik,wim} . Thus, Oi can be replaced in constraints (2b) by

There are also some easy variable fixing for variables as for instance

since i being an open hub does not send flow to itself through any intermediate edge 
(k, i). All this standard preprocessing has been considered as part of the original for-
mulation of OMTHL in our computational tests.

Some valid inequalities for this model are based on the extension of the mixed-cut 
inequality (see Ortega and Wolsey 2003) adapted to the THL by Contreras et al. (2010).

• For m ∈ V and p > 1 , 

 is a valid inequality. Indeed, it represents that a hub cannot be isolated, with 
respect to the other hubs, whenever the number of hubs to be located is greater 
than 1, i.e., at least a hub arc is incident in any hub.

• For i,m ∈ V and F ⊂ V⧵{m} , 

s. t.(1b) − (1f )

(2b)xikm + ximk ≤ Oiykm i, k,m ∈ V ∶ k < m

(2c)Oizik +
∑

m∈V∶m≠k

ximk =
∑
j∈V

wijzjk +
∑

m∈V∶m≠k

xikm i, k ∈ V ∶ i ≠ k

(1i) − (1n)

(2d)xikm ≥ 0 i, k,m ∈ V ∶ k ≠ m.

xikm + ximk ≤(Oi − wii −min{wik,wim})ykm, ∀i, k,m ∈ V ∶ k < m, i ≠ k,m,

xiim ≤(Oi − wii)yim, ∀i,m ∈ V ∶ m > i,

xiim ≤(Oi − wii)ymi, ∀i,m ∈ V ∶ m < i.

xiki = 0,

(3)
∑
k<m

ykm +
∑
m<k

ymk ≥ zmm,

(4)
�

k∈V⧵F

xikm + wim

⎛⎜⎜⎜⎝

�
k∈F

k<m

ykm +
�
k∈F

k>m

ymk

⎞⎟⎟⎟⎠
≥ wim(zmm − zim).
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 This valid inequality means that if a hub is located at site m and node i is not 
assigned to hub m, then the flow from origin i to destination m, wim , is sent by a 
hub arc not included in F or crossing from F to V⧵F.

• For i,m ∈ V and F ⊂ V⧵{m} , J ⊂ V⧵{i,m} , 

 This valid inequality means that the sum of flows with origin in i and destination 
j with j ∈ J ∪ {m} coming via hub m, where m is not the first hub visited by this 
flow is smaller than or equal to the sum of the flow with origin i and destination 
j with j ∈ J ∪ {m} , crossing from F to V⧵F plus the flow with origin i crossing a 
hub arc out of F.

Clearly, inequalities (4) are dominated by (5). Therefore, the former will not be consid-
ered in our computational experiments. In addition, we observe that (5) are an adapta-
tion of the family of inequalities (Contreras et al. 2010, Proposition 4) and therefore, 
they can be separated by an easy adaptation of the procedure described in that paper, 
that we have used in our numerical tests.

3.3  A covering MILP formulation for the OMTHL

It has been previously observed (see Puerto et al. 2011) that ordered median hub loca-
tion problems with the variables used in the previous section are rather difficult to solve 
and one can improve performance by introducing covering variables. The goal of this 
section is to find valid reformulations of the OMTHL using this alternative rationale.

Sorting the different delivery costs values cikOi + ckiDi for i, k ∈ V , in increasing 
order, we get the ordered cost sequence:

where |H| is the number of different non-null elements of the above cost sequence 
and H ∶= {1,… , |H|}.

The first covering formulation extends (1a)–(1o) and it is based on variables ykm , 
xikmj , zik and a new set of variables for any � ∈ V , h ∈ H:

Hence, the covering formulation using four-index variables is: 

(5)
�

k∈V⧵(F∪{m})

xikm +

� �
j∈J∪{m}

wij

�⎛
⎜⎜⎜⎝

�
k∈F

k<m

ykm +
�
k∈F

k>m

ymk

⎞
⎟⎟⎟⎠
≥

�
j∈J∪{m}

wij(zjm − zim).

c(1) ∶= 0 < c(2) < ⋯ < c(|H|) ∶= max
1≤i,k≤|V|{cikOi + ckiDi},

u
�h =

{
1, if the � th assignment cost is at least c(h),

0, otherwise.

(6a)

F4ic ∶ min
∑
�∈V

∑
h∈H

𝜆
�
u
�h(c(h) − c(h−1)) + 𝛼

∑
k∈V

∑
m∈V∶m≠k

∑
i∈V

∑
j∈V∶i<j

(ckmwij + cmkwji)xikmj

s. t.(1b) − (1h)
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 The corresponding covering formulation using three-index variables, F3ic , can be 
defined analogously and it is left to the reader.

4  Improvements

4.1  Variable fixing

Given that the most promising formulations correspond to the covering models, in 
this section, we develop some preprocessings to reduce the size of these formula-
tions in terms of the defined variables. These variable fixing procedures are based 
on non straightforward adaptations of some arguments already used in Puerto et al. 
(2011) and Puerto et al. (2013) for a different formulation. The intuitive idea behind 
these preprocessing phases is to fix to 1 u-variables in the left-bottom part of the 
u-matrix (i.e., for small values of h, hopefully the number of assignments at cost 
smaller than c(h) should be small) and to 0 in the right-top part of the u-matrix (i.e., 
for large values of h, hopefully, the number of assignments at cost smaller than c(h) 
should be high).

4.1.1  Preprocessing for fixing variables to 1

To fix uih-variables to 1 for a given h ∈ H , we deal with an auxiliary prob-
lem that maximizes the number of origin-first hub allocations satisfying 
(cikOi + ckiDi)cik ≤ c(h−1) which is equivalent to the maximum number of variables 
uih that can assume value of 1.

Using the variables previously defined, the formulation of this problem is: 

(6b)
∑
�∈V

u
�h =

∑
i∈V

∑
k∈V∶cikOi+ckiDi≥c(h)

zik h ∈ H

(6c)u
�h ≤ u

�+1,h h ∈ H;� ∈ V ∶ � < |V|

(6d)u
�h ∈ {0, 1} h ∈ H;� ∈ V

(1m) − (1o)

(7a)Ff1 ∶ max h̄1
h
∶=

∑
i∈V

∑
k∈V

zik

(7b)s. t.
∑
k∈V

zik ≤ 1 i ∈ V

(7c)
∑
k∈V

zkk = p



 M. A. Pozo et al.

1 3

If h̄1
h
 is the optimal value of problem above, since there are |V| origin-first hub alloca-

tions, the number of allocations satisfying (cikOi + ckiDi)cik ≤ c(h−1) must be necessar-
ily greater than or equal to |V| − h̄1

h
+ 1 , or equivalently, in any feasible solution of a 

Covering formulation

4.1.2  Preprocessing for fixing variables to 0

Under a similar rationale to the one used in the previous section, we try to fix as many 
uih-variables to 0 as possible, for a given h ∈ H . In this case, we deal with an aux-
iliary problem that maximizes the number of origin-first hub allocations satisfying 
(cikOi + ckiDi)cjk ≥ c(h) . In conclusion, this auxiliary problem provides the minimum 
number of zeros that the hth column of the u-matrix must have. Using the variables 
defined previously, the formulation of this problem is: 

Therefore, if H2h is the optimal value of problem above, the h-th column of the 
u-matrix must have at least |V| − H2h zeros, i.e., in any feasible solution of the Cover-
ing formulation:

(7d)zik ≤ zkk i, k ∈ V ∶ i ≠ k

(7e)(cikOi + ckiDi)zik ≤ c(h−1) i, k ∈ V

(7f)zik ∈ {0, 1} i, k ∈ V .

u
�h = 1, � ∈ V ∶ � > h̄1

h
.

(8a)Ff0 ∶ maxH2h ∶=
∑
i∈V

∑
k∈V

zik

(8b)s. t.
∑
k∈V

zik ≤ 1, i ∈ V

(8c)
∑
k∈V

zkk = p

(8d)zik ≤ zkk i, k ∈ V ∶ i ≠ k

(8e)(cikOi + ckiDi) ≥ c(h)zik i, k ∈ V

(8f)zik ∈ {0, 1} i, k ∈ V

u
�h = 0, ∀� = 1,… , |V| − H2h.
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As it is shown in the next section, the use of the previous valid inequalities plus 
these variable fixing procedures help significantly in solving the OMTHL.

5  Computational results

This section reports on the results of some computational experiments we have run, 
to empirically compare the proposed formulations. We have studied the OMTHL 
combining the different formulations proposed, namely F4i (see Sect. 3.1), F3i (see 
Sect. 3.2), F4ic and F3ic (see both in Sect. 3.3). Given that the sizes of our formu-
lations are a critical issue, we provide in Table 3 theoretical sizes values in terms 
of constraints ( #c ), variables ( #v ), and binary variables ( #b ). In addition, we also 
provide in Table  4 particular figures of these sizes for complete graphs when 
|V| ∈ {20, 30, 40, 50} and |H| = 200.

For our computational experiments, we have considered complete networks of 
sizes (number of nodes) |V| ∈ {20, 30, 40, 50} and integer costs assigned to edges 
randomly generated following a uniform distribution in [1,  100]. We have chosen 
unitary flows sent among each origin–destination pair. Unitary flows imply constant 
values for Oi = Di = |V| − 1 and also imply |H| ≤ 200 since cik, cki ∈ {1,… , 100} 
(there are at most 200 different collection and distribution costs cikOi + ckiDi to be 
sorted). In addition, the discount factor � and the number of hubs parameter p vary 
according to � ∈ {0.5, 0.8} , p ∈ {3, 5, 8} , respectively. For this set of instances, we 
have tested three different criteria for the � values:

• median criterion: � = (1, 1,… , 1)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

|V|

,

• k-centrum criterion: � = (0,… , 0
⏟⏟⏟

⌊ 2

3
�V�⌋

, 1,… , 1
⏟⏟⏟

�V�−⌊ 2

3
�V�⌋

),

• k-trimmed mean criterion: � = (0,… , 0
⏟⏟⏟

⌊ 1

3
�V�⌋

, 1,… , 1
⏟⏟⏟

�V�−⌊ 2

3
�V�⌋

, 0,… , 0
⏟⏟⏟

⌊ 1

3
�V�⌋

).

In all tables, results correspond to a groups of 5 instances (inst∈ {1,… , 5} ) with 
the same size |V|. Instances with the same pair (|V|, inst) share the same cost struc-
ture, independent of other parameter values. We present results for each instance and 
average results for each group. This way, in total, we have a set of 360 benchmark 

Table 3  Theoretical model dimensions

#c #v #b

F4i |V|4
4

+
|V|2
2

+
5|V|
2

+ 1
|V|4
2

+ |V|2 − |V| |V|3 + |V|2
2

−
|V|
2

F3i |V|3
2

+
3|V|2
2

+ |V| + 1 2|V|3 − |V|2
2

−
|V|
2

|V|3 − |V|2
2

−
|V|
2

F4ic |V|4
4

+
|V|2
4

+
|V|
2

+ |V||H| + 2
|V|4
2

− |V|3 + |V|2 − |V|
2

+ |V||H| 3|V|2
2

−
|V|
2

+ |V||H|
F3ic |V|3

2
+

3|V|2
2

− |V| + |V||H| + 2 |V|3 + |V|2
2

−
|V|
2

+ |V||H| 3|V|2
2

−
|V|
2

+ |V||H|
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instances, one per each choice of (|V|, p, � , inst, � ). All instances were solved with 
the MIP Xpress 8.0 optimizer, under a Windows 7 environment in an Intel(R) 
Core(TM)i7 CPU 2.93 GHz processor and 16 GB RAM. Default values were ini-
tially used for all parameters of Xpress solver and a CPU time limit of 3600 s was 
set. We have also tested different combinations of parameters for the solver cut 
strategy and intensity of heuristics but, unless it is specified, the best results were 
obtained with the parameters of the solver set to the default values.

Tables are grouped in blocks. The first block contains 3 columns with the values 
of the instances parameters. Then, we give a block of 6 columns for each tested for-
mulation. The columns of each block are the following: 

1. Columns |#| indicate the number of instances in the group that could be solved to 
optimality within the CPU time limit.

2. Columns gUR give the percentage relative root gap, computed as 100obj
U
−objR

obj
U

 , 
where obj

U
 denotes the best known upper bound obtained in all our experiments 

and objR denotes the optimal value of the linear relaxation at the root node.
3. Columns gUL give the percentage relative lower bound gap, computed as 

100
obj

U
−objL

obj
U

 , objL denotes the lower bound at termination.
4. Columns gUL give the percentage relative upper bound gap, computed as 

100
objU−objL

objU
 , where objU denotes the upper bound at termination and obj

L
 denotes 

the best known lower bound obtained in all our experiments.
5. Columns gUL give the percentage relative gap at termination, computed as 

100
objU−objL

objL
.

6. Columns nod indicate the average number of nodes explored in the Branch-and-
Bound (B&B) tree search.

Note that, while gUR and gUL provide quality measures of the lower bounds (at the 
root node and at termination, respectively), gUL provides a quality measure of the 
upper bounds. In addition, gUL provides a measure of both upper and lower bounds 
for average performance. Entries with the symbol “–” indicates that the average gaps 
are 0, or in other words, that all instances were solved to optimality. In addition, 
entries with the symbol “*” indicates that the average gap could not be computed 
because the objR , objL or objU was missing in at least one instance of the group. This 
is usually returned when the solver is not able to load the instance into memory. In 
addition, objR and objL are not returned when the solver is not able to solve the lin-
ear relaxation of the problem and objU is not returned when the solver is not able to 
load an initial solution and neither able to obtain a feasible solution for the problem. 
In the computational experiments reported in all our tables, we have used as initial 
solution the one returned by the solver for the OMT model (see Sect. 2.2) after 5 
min of CPU time. Once tree variables (y) and allocation variables (z) are obtained, 
the sorting and flow variables can be computed.

The caption just above each block gives the formulation the block refers to. We 
recall that F3i , F3ic , F4i , F4ic stand for the OMTHL formulations 3 index, cover-
ing 3 index, 4 index, and covering 4 index, introduced in Sects.  3.2, 3.3, 3.1 and 
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also 3.3, respectively. In addition F3ic&fix , F4ic&fix , stand for the covering 3 index 
and covering 4 index OMTHL formulations with variable fixing and F3ic&fix&(3), 
F4ic&fix&(3) also include the valid inequality (3). The reader may note that each 
table contains 8 blocks (divided into two parts). To facilitate the comparison among 
tables, the best results in each table are marked in bold so as to highlight the best 
values among the eight proposed formulations.

Table 5 presents the results for the median criterion. At a first glance, we observe 
that blocks F3i , F3ic , F3ic&fix and F3ic&fix&(3) improve one by one in sequence. 
The main difference between blocks F3i and those with covering variables ( F3ic , 
F3ic&fix and F3ic&fix&(3)) is that the latter remain at the root node of the B&B 
search, when solving instances above 40 nodes, just adding some pre-processing 
cuts and loading the initial solution. This happens because solving a single node 
is very costly as it is shown in column nod. Even with this limitation, the covering 
formulations outperforms F3i . In fact, F3i is almost not able to improve the relative 
root gap. Along the 3-index blocks, we also observe that gUL is bigger than gUL , 
indicating that the lower bound is in general closer to the optimum than the upper 
bound. This observation is also supported by the gUL values. Analogously blocks 
F4i , F4ic , F4ic&fix and F4ic&fix&(3) improve one by one in sequence. Two main 
differences can be noted between the 4-index and the 3-index formulations. First, 
the linear relaxation in the 4-index blocks are significantly better (and quite close to 
the optimum) than those in the 3-index blocks. However, we secondly observe that 
the 4-index formulations blow up above 40 nodes where only F4ic&fix&(3) block is 
able to solve the linear relaxation and load an initial solution for 50 nodes instances 
after one hour of CPU time. In addition, 3-index formulations are able to provide 
both upper and lower bounds in all blocks but the remaining gaps at termination are 
quite large (as it is shown in columns gUL and gUL ). From this table, we conclude 
that F4ic&fix&(3) is the best formulation in mostly all cases. In this block, instances 
solved to optimality require only few nodes (in the B&B search) since the linear 
relaxation provides a lower bound very close to the optimum.

Table  6 presents the results for the k-centrum criterion. As in the median cri-
terion, the reader may observe that covering formulations fixing variables provide 
the best performance. However, it can be noticed that k-centrum criterion is much 
more difficult to solve than median criterion, as it can be observed in terms of 
gaps and instances solved to optimality. In particular, no instance above 20 nodes 
was solved to optimality. In this case, the pre-processing for fixing variables and 
the family of valid inequalities (3) allow to solve the linear relaxation of a larger 
number of instances for F4ic&fix&(3). However, F4ic&fix has a better performance 
than F4ic&fix&(3) in mostly all cases if the linear relaxation can be solved. From 
this table, we conclude that covering formulations fixing variables are the best for-
mulations for almost all instances but still the linear relaxation of some 50 nodes 
instances cannot be solved after 1 hour of CPU time.

Table 7 presents the results for the k-trimmed mean criterion. Similar observa-
tions to those for the median and k-centrum criteria can be made in this case. As in 
the previous criteria, F4ic&fix&(3) provides the best performance in terms of gaps 
(intances of 20–40 nodes) and instances solved to optimality ( |V| = 20 ). However, 



1 3

The ordered median tree of hubs location problem  

Ta
bl

e 
5 

 O
M
T
H
L 

re
su

lts
 fo

r t
he

 m
ed

ia
n 

cr
ite

rio
n

|V
| 

�
p

F
3
i

F
3
ic

F
3
ic
&
fi
x

F
3
ic
&
fi
x
&

(3
)

|#|
g
U
R

g
U
L

g
U
L

g
U
L

no
d

|#|
g
U
R

g
U
L

g
U
L

g
U
L

no
d

|#|
g
U
R

g
U
L

g
U
L

g
U
L

no
d

|#|
g
U
R

g
U
L

g
U
L

g
U
L

no
d

20
0.

5
3

5
12

.6
–

–
–

2e
3

5
12

.6
–

–
–

1e
2

5
12

.6
–

–
–

1e
2

5
12

.6
–

–
–

1e
2

20
0.

5
5

0
24

.9
19

.9
11

.7
29

.3
2e

3
4

24
.9

4.
0

0.
4

4.
2

6e
3

4
24

.9
4.

1
1.

0
4.

9
4e

3
4

24
.9

3.
7

0.
9

4.
4

4e
3

20
0.

5
8

0
37

.8
33

.7
16

.2
44

.5
3e

3
0

37
.8

25
.0

12
.1

34
.2

8e
3

0
37

.8
25

.9
10

.9
34

.0
6e

3
0

37
.8

25
.2

11
.9

34
.1

9e
3

20
0.

8
3

5
16

.2
–

–
–

4e
3

5
16

.2
–

–
–

8e
2

5
16

.2
–

–
–

6e
2

5
16

.2
–

–
–

7e
2

20
0.

8
5

0
30

.6
25

.9
9.

4
32

.9
4e

3
4

30
.6

5.
3

1.
1

6.
1

9e
3

2
30

.6
9.

3
2.

3
11

.1
7e

3
4

30
.6

4.
8

1.
6

6.
0

9e
3

20
0.

8
8

0
44

.9
40

.8
16

.4
50

.5
3e

3
0

44
.9

32
.4

12
.0

40
.5

9e
3

0
44

.9
32

.1
11

.2
39

.7
7e

3
0

44
.9

31
.6

13
.0

40
.4

1e
4

30
0.

5
3

0
11

.6
9.

6
8.

9
17

.2
3e

4
3

11
.6

2.
3

0.
6

2.
3

3e
2

3
11

.5
2.

6
0.

7
2.

7
4e

2
3

11
.5

2.
8

1.
0

3.
2

2e
2

30
0.

5
5

0
20

.5
18

.5
15

.7
31

.4
1e

2
0

20
.5

12
.8

5.
4

17
.5

7e
2

0
20

.5
13

.4
6.

0
18

.5
8e

2
0

20
.5

12
.7

3.
9

16
.1

1e
3

30
0.

5
8

0
30

.6
29

.3
16

.6
40

.8
1e

2
0

30
.6

23
.3

15
.0

34
.6

7e
2

0
30

.6
23

.2
11

.8
32

.0
6e

2
0

30
.6

23
.2

15
.0

34
.5

9e
2

30
0.

8
3

0
12

.8
10

.5
16

.2
24

.7
2e

4
3

12
.8

2.
8

1.
0

3.
4

2e
2

4
12

.7
2.

2
0.

9
2.

6
2e

2
4

12
.7

2.
1

1.
2

2.
8

8e
2

30
0.

8
5

0
24

.3
22

.5
26

.1
42

.9
2e

2
0

24
.3

16
.4

7.
0

22
.1

7e
2

0
24

.3
16

.3
7.

3
22

.3
8e

2
0

24
.3

15
.8

8.
3

22
.7

8e
2

30
0.

8
8

0
36

.6
35

.2
27

.1
52

.4
2e

2
0

36
.6

28
.9

20
.0

42
.7

1e
3

0
36

.6
28

.8
19

.7
42

.4
7e

2
0

36
.6

28
.9

23
.4

45
.1

1e
3

40
0.

5
3

0
12

.2
11

.5
17

.6
25

.2
1e

3
0

12
.2

7.
1

7.
8

12
.0

0
0

12
.1

7.
2

16
.7

20
.7

0
0

12
.1

7.
3

17
.9

22
.0

0
40

0.
5

5
0

22
.7

22
.2

19
.7

34
.5

12
0

22
.7

17
.2

16
.3

27
.3

0
0

22
.7

17
.2

18
.0

28
.9

0
0

22
.7

17
.3

20
.3

30
.9

0
40

0.
5

8
0

33
.2

32
.6

25
.2

46
.1

13
0

33
.2

26
.9

21
.4

38
.6

1
0

33
.2

27
.0

22
.6

39
.5

0
0

33
.2

27
.0

29
.0

44
.6

0
40

0.
8

3
0

9.
9

9.
2

28
.2

34
.8

1e
3

0
9.

9
3.

8
7.

2
10

.6
0

0
9.

9
4.

0
25

.5
28

.5
0

0
9.

9
4.

1
28

.4
31

.4
0

40
0.

8
5

0
22

.1
21

.3
30

.6
45

.1
9

0
22

.1
15

.4
24

.7
36

.0
0

0
22

.1
15

.5
26

.2
37

.3
0

0
22

.1
15

.7
30

.6
41

.2
0

40
0.

8
8

0
33

.9
33

.2
34

.0
55

.6
12

0
33

.9
27

.0
28

.7
47

.6
4

0
33

.9
27

.1
29

.4
48

.2
1

0
33

.9
27

.1
38

.4
54

.8
0

50
0.

5
3

0
22

.5
22

.4
13

.2
23

.0
1

0
22

.5
19

.2
12

.6
19

.2
0

0
22

.5
19

.1
12

.6
19

.1
0

0
22

.5
19

.5
13

.4
20

.3
0

50
0.

5
5

0
33

.1
33

.1
26

.0
39

.3
1

0
33

.1
29

.6
23

.8
34

.3
0

0
33

.1
29

.5
23

.8
34

.2
0

0
33

.1
29

.8
27

.1
37

.3
0

50
0.

5
8

0
47

.3
47

.2
28

.6
47

.7
3

0
47

.3
43

.8
28

.8
44

.4
0

0
47

.3
43

.7
28

.8
44

.4
0

0
47

.3
43

.9
32

.0
47

.1
0

50
0.

8
3

0
22

.9
22

.9
21

.7
31

.7
0

0
22

.9
19

.1
18

.7
25

.6
0

0
22

.9
19

.0
17

.9
24

.7
0

0
22

.9
19

.5
22

.0
28

.9
0

50
0.

8
5

0
39

.7
39

.6
36

.1
50

.2
1

0
39

.7
35

.8
29

.8
41

.7
0

0
39

.7
35

.7
29

.8
41

.6
0

0
39

.7
35

.9
37

.3
48

.1
0

50
0.

8
8

0
55

.8
55

.7
42

.4
59

.1
3

0
55

.8
52

.2
37

.6
52

.2
0

0
55

.8
52

.2
37

.6
52

.2
0

0
55

.8
52

.3
45

.0
57

.9
0



 M. A. Pozo et al.

1 3

Ta
bl

e 
5 

 (c
on

tin
ue

d)

|V
|

�
p

F
4
i

F
4
ic

F
4
ic
&
fi
x

F
4
ic
&
fi
x
&

(3
)

|#|
g
U
R

g
U
L

g
U
L

g
U
L

no
d

|#|
g
U
R

g
U
L

g
U
L

g
U
L

no
d

|#|
g
U
R

g
U
L

g
U
L

g
U
L

no
d

|#|
g
U
R

g
U
L

g
U
L

g
U
L

no
d

20
0.

5
3

5
–

–
–

–
5e

2
5

–
–

–
–

1
5

–
–

–
–

1
5

–
–

–
–

1
20

0.
5

5
5

0.
4

–
–

–
1e

2
5

0.
4

–
–

–
3

5
0.

4
–

–
–

3
5

0.
4

–
–

–
2

20
0.

5
8

5
0.

2
–

–
–

17
5

0.
2

–
–

–
3

5
0.

2
–

–
–

3
5

0.
2

–
–

–
2

20
0.

8
3

5
–

–
–

–
1e

3
5

–
–

–
–

0
5

–
–

–
–

0
5

–
–

–
–

0
20

0.
8

5
5

0.
4

–
–

–
8e

2
5

0.
4

–
–

–
3

5
0.

4
–

–
–

13
5

0.
4

–
–

–
2

20
0.

8
8

5
0.

9
–

–
–

2e
2

5
0.

9
–

–
–

30
5

0.
9

–
–

–
18

5
0.

9
–

–
–

20
30

0.
5

3
0

0.
8

0.
7

14
.5

14
.6

3
2

0.
8

0.
7

1.
2

1.
3

0
2

0.
8

0.
7

1.
5

1.
6

0
3

0.
8

0.
6

4.
1

4.
2

15
30

0.
5

5
0

1.
6

1.
0

17
.2

18
.0

17
4

1.
6

0.
2

1.
7

1.
9

2e
2

3
1.

6
0.

2
0.

1
0.

4
87

5
1.

6
–

–
–

36
30

0.
5

8
1

2.
2

1.
5

10
.6

11
.7

9
2

2.
2

0.
8

0.
6

1.
0

74
3

2.
2

0.
7

0.
4

0.
7

50
4

2.
2

0.
5

0.
4

0.
5

83
30

0.
8

3
0

0.
5

0.
5

23
.7

23
.7

24
4

0.
5

0.
4

0.
4

0.
4

0
3

0.
5

0.
4

3.
0

3.
0

53
4

0.
5

0.
4

0.
8

0.
8

27
30

0.
8

5
1

0.
7

0.
4

21
.1

21
.4

8
4

0.
7

0.
1

0.
1

0.
1

42
4

0.
7

0.
3

1.
2

1.
4

66
4

0.
7

0.
1

3.
5

3.
5

36
30

0.
8

8
0

2.
1

1.
1

22
.7

23
.0

80
4

2.
1

0.
9

1.
0

1.
0

25
4

2.
1

0.
9

1.
1

1.
1

1e
2

4
2.

1
1.

0
0.

9
1.

0
27

40
0.

5
3

0
*

*
*

*
0

4
*

*
*

*
0

4
2.

6
2.

6
4.

2
4.

2
0

4
2.

6
2.

6
4.

3
4.

3
0

40
0.

5
5

0
*

*
*

*
0

3
*

*
*

*
0

3
4.

6
4.

6
4.

6
4.

6
0

3
4.

6
4.

6
8.

8
8.

8
0

40
0.

5
8

0
*

*
*

*
0

0
*

*
*

*
0

0
6.

5
6.

4
12

.7
12

.7
0

0
6.

5
6.

4
12

.2
12

.3
0

40
0.

8
3

0
*

*
*

*
0

4
*

*
*

*
0

5
–

–
–

–
1

5
–

–
–

–
1

40
0.

8
5

0
*

*
*

*
0

4
0.

6
0.

4
0.

7
0.

7
2

4
0.

6
0.

6
0.

5
0.

6
0

4
0.

6
0.

6
0.

4
0.

6
0

40
0.

8
8

0
*

*
*

*
0

4
0.

6
0.

6
1.

0
1.

0
0

4
0.

6
0.

6
0.

6
0.

6
1

4
0.

6
0.

6
0.

8
0.

8
1

50
0.

5
3

0
*

*
*

*
0

0
*

*
*

*
0

0
*

*
*

*
0

0
15

.4
12

.6
13

.4
13

.4
0

50
0.

5
5

0
*

*
*

*
0

0
*

*
*

*
0

0
*

*
*

*
0

1
18

.3
18

.3
21

.2
21

.2
0

50
0.

5
8

0
*

*
*

*
0

0
*

*
*

*
0

0
*

*
*

*
0

0
28

.0
28

.0
31

.5
31

.5
0

50
0.

8
3

0
*

*
*

*
0

0
*

*
*

*
0

0
*

*
*

*
0

2
11

.6
11

.6
12

.8
12

.8
0

50
0.

8
5

0
*

*
*

*
0

0
*

*
*

*
0

0
*

*
*

*
0

1
22

.8
22

.8
29

.1
29

.1
0

50
0.

8
8

0
*

*
*

*
0

0
*

*
*

*
0

0
*

*
*

*
0

0
38

.2
37

.6
44

.1
44

.1
0



1 3

The ordered median tree of hubs location problem  

Ta
bl

e 
6 

 O
M
T
H
L 

re
su

lts
 fo

r t
he

 k
-c

en
tru

m
 c

rit
er

io
n

|V
|

�
p

F
3
i

F
3
ic

F
3
ic
&
fi
x

F
3
ic
&
fi
x
&

(3
)

|#|
g
U
R

g
U
L

g
U
L

g
U
L

no
d

|#|
g
U
R

g
U
L

g
U
L

g
U
L

no
d

|#|
g
U
R

g
U
L

g
U
L

g
U
L

no
d

|#|
g
U
R

g
U
L

g
U
L

g
U
L

no
d

20
0.

5
3

0
45

.6
40

.7
10

.3
44

.5
1e

4
1

45
.6

17
.4

5.
9

18
.8

7e
3

1
26

.5
6.

4
4.

2
6.

4
7e

3
0

26
.4

11
.3

4.
6

11
.7

6e
3

20
0.

5
5

0
56

.2
51

.2
17

.8
59

.1
5e

3
0

56
.2

29
.2

7.
0

32
.9

7e
3

0
39

.2
24

.8
7.

1
28

.6
1e

4
0

39
.2

26
.2

6.
3

29
.5

7e
3

20
0.

5
8

0
66

.4
63

.3
22

.6
71

.2
5e

3
0

66
.4

37
.6

14
.5

45
.8

9e
3

0
50

.6
34

.8
15

.1
43

.7
1e

4
0

50
.6

35
.0

14
.3

43
.3

9e
3

20
0.

8
3

0
46

.5
40

.1
9.

4
44

.6
1e

4
1

46
.5

18
.9

3.
9

20
.2

8e
3

1
28

.9
9.

9
4.

0
11

.4
7e

3
2

28
.9

8.
1

2.
9

8.
7

5e
3

20
0.

8
5

0
57

.5
52

.0
30

.1
65

.6
9e

3
0

57
.5

31
.7

8.
8

36
.1

1e
4

0
43

.0
23

.8
11

.7
30

.7
1e

4
0

43
.0

28
.3

10
.9

34
.5

7e
3

20
0.

8
8

0
67

.4
64

.3
29

.3
74

.3
7e

3
0

67
.4

40
.8

15
.7

49
.2

1e
4

0
54

.9
38

.9
13

.5
46

.1
1e

4
0

54
.9

41
.0

21
.7

52
.8

1e
4

30
0.

5
3

0
43

.3
41

.5
34

.4
56

.2
5e

3
0

43
.3

28
.4

17
.0

32
.2

4e
2

0
22

.3
14

.1
15

.3
16

.9
9e

2
0

22
.3

15
.4

14
.3

17
.3

3e
2

30
0.

5
5

0
50

.8
48

.9
41

.0
65

.5
85

0
50

.8
35

.4
34

.6
51

.6
8e

2
0

32
.2

24
.8

35
.0

44
.1

9e
2

0
32

.2
23

.9
30

.3
39

.3
5e

2
30

0.
5

8
0

60
.4

59
.2

42
.3

72
.3

2e
2

0
60

.4
42

.6
37

.0
57

.4
1e

3
0

43
.6

35
.8

33
.0

49
.4

1e
3

0
43

.6
36

.3
40

.2
55

.4
9e

2
30

0.
8

3
0

43
.4

39
.9

37
.2

57
.4

5e
3

0
43

.4
27

.0
16

.7
31

.1
6e

2
0

23
.8

14
.5

19
.0

21
.6

6e
2

0
23

.8
15

.1
15

.1
18

.5
4e

2
30

0.
8

5
0

51
.6

48
.7

51
.5

71
.2

1e
2

0
51

.6
35

.7
40

.0
55

.1
5e

2
0

35
.5

27
.6

39
.2

49
.0

1e
3

0
35

.5
27

.5
52

.1
59

.8
7e

2
30

0.
8

8
0

60
.7

59
.3

52
.1

77
.0

4e
2

0
60

.7
45

.7
43

.0
63

.6
8e

2
0

46
.7

38
.8

40
.0

56
.7

1e
3

0
46

.7
38

.5
50

.6
64

.3
1e

3
40

0.
5

3
0

48
.4

48
.2

41
.1

60
.6

2e
2

0
48

.4
42

.8
34

.2
51

.3
0

0
28

.7
25

.2
25

.0
27

.1
0

0
28

.7
25

.3
41

.5
43

.4
0

40
0.

5
5

0
61

.7
61

.4
45

.8
66

.9
8

0
61

.7
56

.2
44

.1
61

.2
0

0
47

.1
43

.5
41

.9
48

.0
2

0
47

.1
43

.8
46

.4
52

.2
0

40
0.

5
8

0
70

.1
69

.5
49

.2
73

.8
11

0
70

.1
64

.0
45

.1
66

.4
0

0
58

.2
53

.8
45

.2
57

.1
13

0
58

.2
54

.7
50

.9
62

.3
8

40
0.

8
3

0
48

.0
47

.6
51

.4
67

.2
4e

2
0

48
.0

41
.6

42
.3

56
.5

0
0

29
.4

25
.0

24
.0

26
.1

2
0

29
.4

25
.3

34
.7

36
.6

1
40

0.
8

5
0

64
.2

63
.7

56
.6

73
.2

7
0

64
.2

58
.6

45
.4

61
.5

0
0

51
.9

47
.7

44
.9

51
.0

6
0

51
.9

48
.4

51
.6

57
.4

0
40

0.
8

8
0

72
.6

72
.0

61
.0

80
.0

13
0

72
.6

66
.9

53
.4

71
.6

2
0

63
.0

59
.3

52
.4

64
.4

21
0

63
.0

59
.3

62
.3

71
.9

16
50

0.
5

3
0

55
.3

55
.3

37
.1

58
.4

0
0

55
.3

51
.8

32
.5

51
.9

0
0

37
.9

35
.7

32
.6

35
.9

0
0

37
.9

35
.7

37
.2

40
.3

0
50

0.
5

5
0

66
.8

66
.8

50
.8

70
.6

0
0

66
.8

63
.3

46
.4

64
.6

0
0

53
.7

51
.6

45
.1

52
.1

0
0

53
.7

51
.7

50
.9

57
.3

0
50

0.
5

8
0

73
.5

73
.5

56
.2

76
.2

0
0

73
.5

69
.7

52
.9

70
.6

0
0

62
.2

60
.1

52
.2

60
.9

0
0

62
.2

60
.2

57
.3

65
.1

0
50

0.
8

3
0

58
.4

58
.4

47
.1

65
.1

0
0

58
.4

54
.6

38
.3

55
.8

0
0

43
.4

40
.8

38
.7

42
.6

0
0

43
.3

41
.0

47
.1

50
.5

0
50

0.
8

5
0

69
.9

69
.9

60
.9

76
.9

0
0

69
.9

66
.4

50
.1

67
.1

0
0

59
.0

56
.9

49
.5

57
.2

0
0

59
.0

56
.9

61
.2

67
.1

0
50

0.
8

8
0

77
.3

77
.3

65
.3

81
.6

0
0

77
.3

73
.8

58
.3

74
.5

0
0

68
.6

66
.6

57
.9

67
.0

0
0

68
.6

66
.6

66
.3

73
.7

0



 M. A. Pozo et al.

1 3

Ta
bl

e 
6 

 (c
on

tin
ue

d)

|V
|

�
p

F
4
i

F
4
ic

F
4
ic
&
fi
x

F
4
ic
&
fi
x
&

(3
)

|#|
g
U
R

g
U
L

g
U
L

g
U
L

no
d

|#|
g
U
R

g
U
L

g
U
L

g
U
L

no
d

|#|
g
U
R

g
U
L

g
U
L

g
U
L

no
d

|#|
g
U
R

g
U
L

g
U
L

g
U
L

no
d

20
0.

5
3

0
33

.7
28

.1
10

.6
33

.0
1e

3
1

33
.7

14
.5

6.
2

16
.4

7e
2

2
17

.5
6.

3
9.

2
11

.1
1e

3
3

17
.5

4.
2

4.
9

4.
9

5e
2

20
0.

5
5

0
31

.7
27

.5
10

.6
34

.0
8e

2
0

31
.7

10
.5

3.
6

12
.2

1e
3

4
18

.3
1.

9
2.

2
2.

2
9e

2
4

18
.3

1.
9

1.
9

1.
9

1e
3

20
0.

5
8

0
31

.9
28

.7
14

.6
38

.1
6e

2
3

31
.9

5.
5

1.
8

5.
6

1e
3

4
18

.7
1.

9
1.

8
2.

0
1e

3
3

18
.7

2.
9

1.
9

3.
1

1e
3

20
0.

8
3

0
33

.1
27

.8
6.

4
30

.9
1e

3
0

33
.1

13
.9

3.
9

15
.4

9e
2

3
19

.0
3.

6
2.

7
4.

1
1e

3
2

19
.0

4.
7

2.
4

4.
9

1e
3

20
0.

8
5

0
31

.0
26

.4
19

.8
39

.8
7e

2
2

31
.0

7.
1

3.
1

7.
7

1e
3

4
20

.6
2.

5
2.

8
2.

9
1e

3
3

20
.6

3.
5

2.
7

3.
7

1e
3

20
0.

8
8

0
31

.7
27

.7
11

.7
35

.2
6e

2
3

31
.7

3.
7

2.
6

4.
3

1e
3

4
21

.3
2.

0
2.

0
2.

0
1e

3
4

21
.3

2.
1

2.
5

2.
6

1e
3

30
0.

5
3

0
34

.1
33

.6
32

.2
48

.7
0

0
34

.1
28

.7
25

.0
38

.9
10

0
16

.3
13

.0
12

.5
13

.2
9

0
16

.3
13

.6
15

.7
16

.9
5

30
0.

5
5

0
*

*
*

*
0

0
31

.2
22

.8
16

.4
26

.1
10

0
17

.5
12

.9
12

.8
13

.0
20

0
17

.5
13

.5
13

.2
14

.0
29

30
0.

5
8

0
*

*
*

*
0

0
32

.8
22

.5
16

.6
24

.0
34

0
20

.6
15

.6
16

.2
16

.9
45

0
20

.6
15

.7
17

.2
18

.0
29

30
0.

8
3

0
33

.2
31

.9
48

.9
60

.5
0

0
33

.2
27

.6
17

.1
32

.3
5

0
16

.6
12

.1
11

.8
12

.3
34

0
16

.6
13

.2
11

.8
13

.4
11

30
0.

8
5

0
30

.3
30

.0
45

.5
55

.5
0

0
30

.3
22

.2
14

.6
22

.7
6

0
19

.5
14

.5
15

.1
15

.5
24

0
19

.5
15

.5
14

.5
16

.0
28

30
0.

8
8

0
31

.4
31

.0
44

.3
54

.7
0

0
31

.4
18

.2
20

.1
22

.7
23

0
21

.6
15

.8
15

.9
16

.2
56

0
21

.6
16

.1
17

.5
18

.1
31

40
0.

5
3

0
*

*
*

*
0

0
42

.7
41

.0
39

.1
53

.5
0

0
24

.1
23

.3
38

.1
38

.3
0

0
24

.1
23

.3
41

.5
41

.7
0

40
0.

5
5

0
*

*
*

*
0

0
*

*
*

*
0

0
38

.2
36

.8
38

.0
38

.0
0

0
38

.2
36

.8
40

.6
40

.6
0

40
0.

5
8

0
*

*
*

*
0

0
*

*
*

*
0

0
42

.5
41

.1
41

.9
42

.1
1

0
42

.5
40

.9
46

.8
46

.9
0

40
0.

8
3

0
*

*
*

*
0

0
*

*
*

*
0

0
*

*
*

*
0

0
24

.1
23

.1
51

.9
52

.1
0

40
0.

8
5

0
*

*
*

*
0

0
51

.9
49

.7
49

.1
56

.5
0

0
42

.7
41

.3
49

.6
49

.6
0

0
42

.7
41

.3
57

.2
57

.2
0

40
0.

8
8

0
*

*
*

*
0

0
*

*
*

*
0

0
47

.6
46

.1
48

.6
48

.6
0

0
47

.6
46

.0
63

.3
63

.3
0

50
0.

5
3

0
*

*
*

*
0

0
*

*
*

*
0

0
32

.4
32

.4
32

.8
32

.8
0

0
32

.4
32

.4
35

.9
35

.9
0

50
0.

5
5

0
*

*
*

*
0

0
*

*
*

*
0

0
44

.6
44

.5
45

.5
45

.5
0

0
44

.6
44

.6
47

.2
47

.2
0

50
0.

5
8

0
*

*
*

*
0

0
*

*
*

*
0

0
*

*
*

*
0

0
*

*
*

*
0

50
0.

8
3

0
*

*
*

*
0

0
*

*
*

*
0

0
36

.7
36

.7
38

.2
38

.2
0

0
36

.7
36

.7
47

.1
47

.1
0

50
0.

8
5

0
*

*
*

*
0

0
*

*
*

*
0

0
*

*
*

*
0

0
49

.1
49

.1
57

.1
57

.1
0

50
0.

8
8

0
*

*
*

*
0

0
*

*
*

*
0

0
*

*
*

*
0

0
*

*
*

*
0



1 3

The ordered median tree of hubs location problem  

Ta
bl

e 
7 

 O
M
T
H
L 

re
su

lts
 fo

r t
he

 k
-tr

im
m

ed
 m

ea
n 

cr
ite

rio
n

|V
|

�
p

F
3
i

F
3
ic

F
3
ic
&
fi
x

F
3
ic
&
fi
x
&

(3
)

|#|
g
U
R

g
U
L

g
U
L

g
U
L

no
d

|#|
g
U
R

g
U
L

g
U
L

g
U
L

no
d

|#|
g
U
R

g
U
L

g
U
L

g
U
L

no
d

|#|
g
U
R

g
U
L

g
U
L

g
U
L

no
d

20
0.

5
3

0
45

.1
37

.9
6.

8
42

.1
1e

4
4

45
.1

3.
9

-
3.

9
8e

3
4

27
.9

3.
4

0.
1

3.
5

5e
3

4
27

.8
2.

7
0.

1
2.

9
6e

3
20

0.
5

5
0

57
.6

52
.1

22
.2

62
.8

6e
3

0
57

.6
18

.7
6.

1
23

.4
2e

4
0

41
.7

23
.5

7.
2

28
.9

1e
4

0
41

.7
24

.3
4.

9
28

.1
1e

4
20

0.
5

8
0

67
.2

61
.1

18
.2

68
.1

6e
3

0
67

.2
40

.6
11

.3
47

.2
1e

4
0

57
.7

38
.9

17
.1

49
.0

2e
4

0
57

.7
38

.5
17

.9
49

.2
2e

4
20

0.
8

3
0

46
.8

37
.9

5.
6

41
.1

1e
4

4
46

.8
4.

4
0.

2
4.

6
9e

3
3

31
.2

7.
9

0.
5

8.
3

6e
3

4
31

.2
4.

6
-

4.
6

7e
3

20
0.

8
5

0
61

.7
55

.4
23

.4
65

.9
8e

3
0

61
.7

26
.9

6.
8

31
.7

2e
4

0
49

.2
30

.7
4.

5
33

.7
1e

4
0

49
.2

29
.8

8.
1

35
.3

1e
4

20
0.

8
8

0
70

.4
64

.2
14

.2
69

.3
7e

3
0

70
.4

46
.3

17
.8

55
.8

2e
4

0
63

.6
44

.0
19

.3
54

.6
3e

4
0

63
.6

46
.6

17
.4

55
.6

2e
4

30
0.

5
3

0
41

.6
38

.5
44

.7
62

.6
6e

3
0

41
.6

24
.0

19
.0

31
.9

1e
3

0
24

.3
14

.9
20

.6
25

.4
1e

3
0

24
.2

15
.4

27
.6

32
.3

9e
2

30
0.

5
5

0
56

.1
53

.9
41

.5
69

.5
5e

2
0

56
.1

36
.0

23
.2

44
.2

2e
3

0
41

.0
30

.4
24

.7
40

.3
1e

3
0

41
.0

30
.5

33
.0

47
.3

9e
2

30
0.

5
8

0
65

.6
63

.5
34

.9
74

.7
4e

2
0

65
.6

41
.2

23
.8

52
.4

2e
3

0
51

.5
41

.4
34

.3
59

.2
1e

3
0

51
.5

40
.1

32
.9

57
.3

1e
3

30
0.

8
3

0
43

.0
39

.1
46

.6
63

.3
2e

3
0

43
.0

25
.9

13
.1

27
.8

1e
3

0
27

.6
18

.1
15

.3
22

.3
8e

2
0

27
.5

17
.5

16
.1

22
.5

8e
2

30
0.

8
5

0
56

.5
54

.3
54

.3
76

.7
8e

2
0

56
.5

35
.5

21
.5

43
.5

3e
3

0
43

.4
32

.4
39

.9
54

.9
1e

3
0

43
.4

32
.0

33
.5

49
.7

1e
3

30
0.

8
8

0
68

.0
65

.9
39

.4
77

.7
5e

2
0

68
.0

48
.1

30
.0

60
.6

3e
3

0
57

.2
46

.4
40

.2
65

.5
1e

3
0

57
.2

46
.0

41
.9

66
.1

1e
3

40
0.

5
3

0
38

.6
37

.8
49

.3
64

.0
1e

3
0

38
.6

32
.5

37
.1

51
.6

1
0

20
.1

15
.5

40
.9

43
.0

2
0

20
.1

15
.3

38
.5

40
.4

0
40

0.
5

5
0

50
.1

49
.4

55
.4

73
.6

11
0

50
.1

40
.5

39
.8

58
.2

2
0

33
.8

26
.9

55
.7

62
.2

5
0

33
.8

27
.1

48
.9

56
.4

5
40

0.
5

8
0

64
.2

63
.1

57
.5

80
.6

12
0

64
.2

50
.3

43
.8

65
.4

5
0

50
.1

42
.4

51
.2

65
.3

22
0

50
.1

42
.8

57
.7

70
.1

14
40

0.
8

3
0

38
.3

36
.7

61
.1

71
.9

6e
2

0
38

.3
31

.3
32

.9
47

.3
1

0
21

.2
15

.2
24

.2
26

.6
9

0
21

.2
15

.5
37

.9
40

.3
1

40
0.

8
5

0
51

.4
49

.9
65

.1
79

.3
11

0
51

.4
40

.6
46

.0
62

.1
5

0
37

.1
29

.2
52

.4
60

.2
10

0
37

.1
29

.0
60

.2
66

.9
9

40
0.

8
8

0
64

.5
63

.7
66

.0
85

.1
17

0
64

.5
50

.9
50

.2
70

.6
16

0
52

.5
45

.0
61

.7
74

.4
24

0
52

.5
45

.2
58

.8
72

.7
26

50
0.

5
3

0
53

.8
53

.7
44

.4
61

.4
2

0
53

.8
50

.0
33

.3
50

.0
0

0
40

.2
37

.4
44

.8
48

.1
0

0
40

.1
37

.2
44

.8
48

.0
0

50
0.

5
5

0
68

.7
68

.7
58

.1
75

.5
0

0
68

.7
65

.1
46

.5
65

.1
0

0
58

.7
55

.8
59

.7
66

.7
0

0
58

.7
55

.9
59

.7
66

.7
0

50
0.

5
8

0
78

.1
78

.0
68

.8
81

.6
1

0
78

.1
74

.7
63

.2
75

.3
0

0
70

.4
67

.9
71

.1
75

.3
0

0
70

.4
67

.9
71

.1
75

.3
0

50
0.

8
3

0
57

.5
57

.3
54

.7
68

.9
9

0
57

.5
53

.4
37

.7
53

.4
0

0
45

.8
42

.8
55

.5
59

.0
0

0
45

.7
42

.5
55

.5
58

.9
0

50
0.

8
5

0
72

.9
72

.9
67

.7
81

.7
0

0
72

.9
69

.3
52

.3
69

.3
0

0
65

.0
62

.1
68

.9
75

.3
0

0
65

.0
62

.1
68

.9
75

.3
0

50
0.

8
8

0
81

.7
81

.6
77

.9
87

.3
1

0
81

.7
78

.5
67

.5
78

.5
0

0
75

.9
73

.6
78

.4
82

.2
0

0
75

.9
73

.6
78

.4
82

.2
0



 M. A. Pozo et al.

1 3

Ta
bl

e 
7 

 (c
on

tin
ue

d)

|V
|

�
p

F
4
i

F
4
ic

F
4
ic
&
fi
x

F
4
ic
&
fi
x
&

(3
)

|#|
g
U
R

g
U
L

g
U
L

g
U
L

no
d

|#|
g
U
R

g
U
L

g
U
L

g
U
L

no
d

|#|
g
U
R

g
U
L

g
U
L

g
U
L

no
d

|#|
g
U
R

g
U
L

g
U
L

g
U
L

no
d

20
0.

5
3

0
26

.9
20

.2
2.

0
21

.8
9e

2
3

26
.9

2.
0

0.
4

2.
4

1e
3

5
12

.7
–

–
–

5e
2

5
12

.6
–

–
–

6e
2

20
0.

5
5

0
24

.4
17

.0
4.

0
20

.2
5e

2
5

24
.4

–
–

–
5e

2
5

9.
1

–
–

–
5e

2
5

9.
1

–
–

–
4e

2
20

0.
5

8
0

15
.5

7.
2

2.
1

9.
0

6e
2

5
15

.5
–

–
–

20
5

6.
3

–
–

–
5

5
6.

3
–

–
–

12
20

0.
8

3
0

26
.8

16
.4

2.
7

18
.6

8e
2

3
26

.8
3.

8
0.

4
4.

1
6e

2
3

15
.0

2.
3

–
2.

3
6e

2
5

14
.9

–
–

–
4e

2
20

0.
8

5
0

27
.0

19
.3

7.
7

25
.5

7e
2

5
27

.0
–

–
–

6e
2

4
16

.7
0.

4
0.

1
0.

4
5e

2
4

16
.7

0.
3

0.
8

1.
1

1e
3

20
0.

8
8

0
19

.0
11

.1
6.

8
17

.0
9e

2
5

19
.0

–
–

–
3e

2
5

12
.9

–
–

–
3e

2
5

12
.9

–
–

–
3e

2
30

0.
5

3
0

27
.5

26
.1

45
.1

55
.2

0
0

27
.5

20
.3

10
.8

21
.7

22
0

13
.9

11
.0

9.
6

11
.5

16
0

13
.9

9.
3

10
.7

10
.8

30
30

0.
5

5
0

30
.8

30
.0

44
.4

55
.9

0
0

30
.8

18
.7

12
.9

19
.7

49
0

18
.4

13
.1

13
.1

14
.2

51
0

18
.4

12
.5

13
.1

13
.7

52
30

0.
5

8
0

27
.5

26
.4

39
.2

52
.6

0
0

27
.5

12
.7

6.
9

13
.7

90
0

14
.8

9.
0

6.
0

9.
1

26
1

14
.8

6.
2

6.
5

6.
9

1e
2

30
0.

8
3

0
28

.2
26

.5
49

.6
58

.3
0

0
28

.2
19

.1
12

.4
20

.6
59

0
16

.8
12

.1
20

.1
21

.5
36

0
16

.8
11

.3
13

.4
14

.0
36

30
0.

8
5

0
29

.0
27

.6
61

.1
68

.3
10

0
29

.0
16

.7
11

.4
17

.5
72

0
19

.3
13

.9
11

.5
14

.8
73

0
19

.3
10

.5
11

.3
11

.3
1e

2
30

0.
8

8
0

*
*

*
*

0
0

30
.0

9.
9

8.
6

10
.9

1e
2

0
21

.3
8.

9
8.

9
10

.2
1e

2
0

21
.3

8.
5

8.
3

9.
1

1e
2

40
0.

5
3

0
*

*
*

*
0

0
*

*
*

*
0

0
12

.9
12

.5
20

.5
20

.5
2

0
12

.9
12

.4
12

.9
12

.9
5

40
0.

5
5

0
*

*
*

*
0

0
*

*
*

*
3

0
15

.1
14

.4
14

.3
14

.4
3

0
15

.1
14

.3
14

.6
14

.6
7

40
0.

5
8

0
*

*
*

*
0

0
*

*
*

*
0

0
20

.6
19

.8
23

.5
23

.9
2

0
20

.6
19

.7
24

.1
24

.5
4

40
0.

8
3

0
*

*
*

*
0

0
*

*
*

*
0

0
13

.0
12

.5
12

.4
12

.5
4

0
13

.0
12

.4
12

.4
12

.4
4

40
0.

8
5

0
*

*
*

*
0

0
*

*
*

*
0

0
16

.4
15

.9
15

.4
16

.0
5

0
16

.6
15

.5
15

.4
15

.5
7

40
0.

8
8

0
*

*
*

*
0

0
*

*
*

*
0

0
19

.3
17

.6
16

.9
17

.9
2

0
19

.2
16

.7
17

.0
17

.1
6

50
0.

5
3

0
*

*
*

*
0

0
*

*
*

*
0

0
*

*
*

*
0

0
33

.3
33

.3
44

.8
44

.8
0

50
0.

5
5

0
*

*
*

*
0

0
*

*
*

*
0

0
*

*
*

*
0

0
46

.6
46

.5
59

.7
59

.7
0

50
0.

5
8

0
*

*
*

*
0

0
*

*
*

*
0

0
*

*
*

*
0

0
*

*
*

*
0

50
0.

8
3

0
*

*
*

*
0

0
*

*
*

*
0

0
37

.9
37

.8
55

.5
55

.6
0

0
37

.8
37

.7
55

.5
55

.5
0

50
0.

8
5

0
*

*
*

*
0

0
*

*
*

*
0

0
*

*
*

*
0

0
52

.4
52

.3
68

.9
68

.9
0

50
0.

8
8

0
*

*
*

*
0

0
*

*
*

*
0

0
*

*
*

*
0

0
*

*
*

*
0



1 3

The ordered median tree of hubs location problem  

when the size of the 4-index formulation is too big to be loaded into memory 
( |V| = 50 ), only the 3-index formulations are able to solve the linear relaxation and 
to load the initial solution but leaving significant termination gaps in this case.

To help understanding the conclusions, Table 8 identifies which models work bet-
ter for each combination of |V|, � , p and criterion according to gUL values. We use 
gUL to break ties as a first criterion and the average gUL for the |V| group as a sec-
ond criterion (average gUL for all rows, otherwise). From this table, one can con-
clude that F4ic&fix&(3) is the formulation with the best performance in most of the 
analyzed instances.

6  Conclusions and future remarks

In this paper, we consider the OMTHL, that is a single-allocation hub location prob-
lem where p hubs must be placed on a network and connected by a non-directed 
tree. The OMTHL is a complex network design problem that involves a number of 

Table 8  Best OMTHL model 
for each combination of |V|, � , p 
and criterion according to gUL 
values

|V| � p Median k-centrum k-trimmed

20 0.5 3 F4ic&fix&(3) F4ic&fix&(3) F4ic&fix&(3)
20 0.5 5 F4ic&fix&(3) F4ic&fix&(3) F4ic&fix&(3)
20 0.5 8 F4ic&fix&(3) F4ic&fix F4ic&fix&(3)
20 0.8 3 F4ic&fix&(3) F4ic&fix F4ic&fix&(3)
20 0.8 5 F4ic&fix&(3) F4ic&fix F4ic

20 0.8 8 F4ic&fix&(3) F4ic&fix F4ic&fix&(3)
30 0.5 3 F4ic&fix&(3) F4ic&fix F4ic&fix&(3)
30 0.5 5 F4ic&fix&(3) F4ic&fix F4ic&fix&(3)
30 0.5 8 F4ic&fix&(3) F4ic&fix F4ic&fix&(3)
30 0.8 3 F4ic F4ic&fix F4ic&fix&(3)
30 0.8 5 F4ic F4ic&fix F4ic&fix&(3)
30 0.8 8 F4ic F4ic&fix F4ic&fix&(3)
40 0.5 3 F4ic&fix F4ic&fix F4ic&fix&(3)
40 0.5 5 F4ic&fix F4ic&fix F4ic&fix&(3)
40 0.5 8 F4ic&fix&(3) F4ic&fix&(3) F4ic&fix&(3)
40 0.8 3 F4ic&fix F4ic&fix&(3) F4ic&fix&(3)
40 0.8 5 F4ic F4ic&fix F4ic&fix&(3)
40 0.8 8 F4ic&fix F4ic&fix&(3) F4ic&fix&(3)
50 0.5 3 F4ic&fix&(3) F4ic&fix F4ic&fix&(3)
50 0.5 5 F4ic&fix&(3) F4ic&fix F4ic&fix&(3)
50 0.5 8 F4ic&fix&(3) F4ic&fix&(3) F3ic&fix&(3)
50 0.8 3 F4ic&fix&(3) F4ic&fix F4ic&fix&(3)
50 0.8 5 F4ic&fix&(3) F4ic&fix&(3) F4ic&fix&(3)
50 0.8 8 F4ic&fix&(3) F4ic&fix&(3) F3ic&fix&(3)
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components (hub network connectivity, flow between each vertex pair, and sorting 
of the distribution and collection costs) each of which is by itself a hard combinato-
rial optimization problem. The in/exclusion of these components give rise to differ-
ent subproblems of the OMTHL that are well-known problems of the literature. We 
have presented a general 4-index OMTHL formulation that includes all these sub-
problems. This formulation admits a 3-index reformulation that uses 3-indexes flow 
variables instead of 4 indexes at the expense of a weaker linear relaxation. Given that 
ordered median hub location problems with the given sorting variables are rather 
difficult to solve we have improved the formulations by introducing covering vari-
ables in two valid OMTHL reformulations. In addition, we have developed two pre-
processings to reduce the size of these formulations. Computational results are given 
for three criteria (median, k-centrum, k-trimmed mean) showing that F4ic&fix&(3) 
is the best formulation able to solve instances to optimality (or close to optimality) 
for sizes up to 30 nodes. F4ic&fix&(3) also provides the best results for instances 
of 40 nodes but in this case only the linear relaxation can be computed with some 
additional pre-processing cuts loading an initial solution obtained from the OMT 
problem. For the largest instances of 50 nodes the best performance is obtained by 
F3ic&fix&(3). The reader can observe that in these cases after adding cuts and the 
preprocessing phase, we can solve the linear relaxation of all instances and provide 
upper bounds based on the initial solutions provided by some of our subproblems.
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